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Abstract-The dynamic and thermal properties of a laminar flow past a sinusoidal cavity are studied. 
Velocity and temperature fields inside and above the cavity are numerically determined from the viscous 
flow equations. Results are compared with the experimental data obtained with a model placed in an 
incompressible and uniform flow. The good agreement with the dynamic field configuration allows the 
extension of these calculations to other sinusoidal wall geometries, to other main flow velocities and to 
cases with suction at the wall. Examples of streamlines and isotherms are given for these various situations. 

1. INTRODUCTION 

FLOWS and heat transfer in cavities of various shapes 
have been the subject of many publications in recent 
years [l-7]. Such studies are motivated by a desire 
to better understand the perturbations induced on the 
transfers at the wall by various surface irregularities. 

The development of new low-velocity measurement 
techniques, such as laser anemometry, has made 
possible some of these studies [2]; simultaneously, 
the numerical resolution of the coupled Navier- 
Stokes and energy equations in the cavity [2-51 is 
now feasible with the high-speed and large memory 
computers. 

This paper deals with the analytical and experi- 
mental study of heat transfer in laminar flow past a 
sinusoidal cavity of large amplitude/wavelength ratio. 
Various surface geometries and flow velocities are 
numerically investigated. Finally, the influence of 
suction at the wall is presented. 

2. ANALVTICAL STUDY 

Let us consider a sinusoidal cavity of amplitude a 
and wavelength 1 (see Fig. 1). The fluid is assumed to 
be incompressible, Newtonian, with constant proper- 
ties inside and over the boundary layer. Due to the 
low value of the Reynolds number, the flow is assumed 
to be steady and laminar. Effects of gravity and 
viscous dissipation are supposed to be negligible. 

The dimensionless differential equations describing 
the velocity and temperature fields may be written in 

‘r -r-i-l 

FIG. 1. Schematic configuration. 

terms of stream function $, vorticity w and tempera- 
ture 0 as 

a2* al* 
m=-ax’++ (1) 

Equation (3) has the same mathematical form as 
equation (2), but its boundary conditions are different. 

2.1. Boundary conditions 
Domain &@ is shown in Fig. 1. The boundary 

conditions relative to this physical situation are given 
below. 

2.1.1. At the wall. 
(1) For the stream function: 

(a) when there is no slip at the wall and no 
injection nor suction through it 

=0 and II/,=O; 

(b) when a uniform and vertical suction is 
imposed 

a* 
Fw 

=O and z =-v 

ax, w 

then I++, becomes a linear function of the 
abscissa x 

JI, = -vD,x + const. 

(2) The vorticity w, at the wall is deduced from 
equation (1) near the wall (cf. ref. [S]). 

(3) The temperature is equal to T,, which gives 

8, = 0. 
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NOMENCLATURE 

a amplitude of the sinusoidal cavity 

Em1 
D reference length (taken here equal 

to the momentum thickness at xd) 

[ml 
dx,dy mesh size in the x- and y-directions 

Cm1 
Pr Prandtl number 
Re Reynolds number calculated with D 
T local temperature [K] 
a, r velocity components [m s- ‘f 
ii, 6 dimensionless components: 

d = u/u,; 6 = v/v, 

X,Y coordinates defined in Fig. 1 [m] 
x x/D 
Y Y/D. 

Greek symbols 

al,a2,a3 relaxation factors for the IJ~, w 
and i3 difference equations, 
respectively 

9 dimensionless temperature, 

v- T,)Iom - T/I 
I wavelength 
V kinematic viscosity 
t,b dimensionless stream function, 

(stream function/u,D) 
w dimensionless vorticity function, 

(vorticity/(lc,/D)). 

Subscripts 
d upstream abscissa of domain 9 (see 

Fig. 1) 
f downstream abscissa of domain 9 
i, j denotes position in the x- and Y- 

directions 
W wall 
co main flow. 

Superscript 
n iteration index. 

2.1.2. In the main pow. 

U, = 1 which implies z = 1 

and 

at? 
Z = lZonst. 

a=0 These relations correspond to fully developed flow 

T = T, which implies 0 = 1. 
and temperature fields. However, several other con- 
ditions were tried and results were found to be similar. 

2.1.3. At the upstream boundary: x = xd. The pro- __ 
files of the stream function I/S(Y) and the vorticity w(y) 
are specified from Blasius’ boundary layer theory on 
a flat plate at zero incidence with the previous 
boundary conditions in the main flow and at the wall. 

The temperature profile B(y) is directly deduced 
from the velocity u(y) using the Crocco analogy which 
gives 

It should be noted that the choice of such profiles 
is not very important, if the upstream boundary of 
domain 9 is far enough from the beginning of the 
cavity; computation shows that the results are not 
modified with another choice of the initial profiles. 

2.1.4. At the downstream boundary: x = xf. As pre- 
viously, the imposed conditions are approximative by 
nature, since the cavity may indefinitely influence the 
external flow. The following relations were used: 

aJt 
z = const. 

aw 
z=o 

2.2. Numerical tr~at~nt 
With the boundary conditions, the system of differ- 

ential equations cannot be solved analytically and so 
numerical techniques must be employed. The use of 
a finite difference method enables us to transform the 
three partial differential equations into algebraic ones. 
The choice of the general mesh system for domain 9 
has a predominant influence on the convergence of 
the calculations. 

A non-uniform, rectangular grid was chosen with 
a varying mesh spacing throughout the domain. The 
grid in Fig. 3 is shown for illustration purposes only; 
it does not represent exactly the meshes which were 
used. 

In the cavity, the mesh size was kept constant along 
the x-axis, whereas along the y-axis it was determined 
in order to have nodes lying just upon the sinusoidal 
wall. Hence, the wall vorticity o, is easily evaluated 
without any interpolation. 

Outside the cavity, the mesh size along the x-axis 
was kept constant. Along ‘the y-axis: between 0 and 
y = D (where I) is the boundary layer thickness at 
the abscissa xd) the mesh was also kept constant; for 
y > D, mesh sizes were determined in arithmetical 
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FIG. 2. Sketch of general grid. 

FIG. 3. System of nodal points. 

progression. In this way the position of the upper 
boundary of domain 9 can be modified without 
increasing the number of meshes, only the factor of 
the progression is changed. With this possibility, the 
distance over which the solution is not influenced 
by this position can be estimated; in the present 
applications a distance of 7D was found to be 
sufficient. 

2.3. Discretization 
lotions (l)-(3) are discretized as follows: 

(1) For the diffusion terms, ‘central differences’ are 
used 

where #u is the value of any function # at the i,jth 
node of the grid; this is illustrated in Fig. 2. (f, is used 
for the function JI, o or 0. 

(2) For the convection terms, ‘upwind differences’ 
are used (cf. ref. [ 11 ‘J). They may be expressed as 

-a# -cPij-#i-I,) ifI>~ 

u2E=” dSi 

-84 -#i+l,j-di.4 ifa< 

uz=” d&+1 

with equivalent formulae along the y-axis. 

When the differenti~ terms are replaced by these 
algebraic quantities in the three equations, an iterative 

calculation is used. At each iteration, the new solutions 
of the three equations are derived from the previous 
calculated fields. These calculations are repeated until 
the difference between two successive iterations is 
smaller than S/10,000 for the three functions. To 
start this iterative procedure a judicious arbitrary 
repartition of $, o and (3 in the whole domain is used; 
it was found that Blasius’ initial profiles over the 
cavity and values equal to zero inside the cavity 
provided good initial profiles. 

This convergence procedure is largely improved by 
using the relaxation method, where the values $‘, oc 
and 8’ directly computed from the equations are 
corrected by @“-i), I#-‘) and B@‘-l), given at the 
(n - i)th iteration, as 

co!:,! = (1 - a2)w~:j- lb + a,wT,j 

@!) = (1 - a,ffJI;;-l) f 
11 

x 0’: 
3 1.1 

where aI, at, a3 are relaxation coefficients. 
The stability of the solution depends essentially 

upon the choice of the relaxation parameters, the 
mesh size and the treatment of the convection terms. 

For the stream function J/, a consLant relaxation 
coefficient a, can be taken. However, relaxation of 
the vorticity with a constant coefhcient a2 leads to 
dramatic instabilities as observed by Johnson and 
Dhanak [YJ. They suggested that, for a rectangular 
cavity, the coefficient a is a function of the local 
velocity at each step. In the present work, this 
coefficient a, is in a similar form, but the mesh sizes 
in the x- and y-directions being neither equal nor 
regular, the absolute value of the difference in velo- 
cities at each node was taken into account, in the 
following way: 

where kI and k, are constants; for experimental 
conditions, they are equal to 3 and 4, respectively; so, 
a2 is varying between 0.1 and 0.75 whereas al is equal 
to 1.2. 

For the temperature field, the energy equation is 
analogous to the momentum one, thus a3 has the 
same expression as az, with Re fr instead of Re. 

When these coefficients are judiciously chosen, 
convergence was always obtained in less than 800 
iterations. If more iterations are performed the conver- 
gence improves regularly; typical solution times 
required l-2min for 800 iterations on the NAS- 
AS~9080. 

3. EXPERIMENTAL PROCEDURE AND RESULTS 

3.1. Experimental devices 
Experiments were carried out at atmospheric pres- 

sure, in a low-speed wind tunnel, the characteristics 
of which are presented in refs. [9, lo]. The temperature 
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FIG. 4. Experimental and calculated velocity profiles. 

of the fluid is controlled with an electrical air heater. 
The test plate, made of brass, has an elliptic leading 
edge, then is flat and further downstream, wavy. 
The amplitude of the waves is equal to 5mm, the 
wavelength is 50mm. The test plate is heated by a 
circulation of warm water; its uniform temperature is 
lower than that of the main flow. 

Velocity measurements are performed by laser 
anemometry and local temperatures are measured by 
means of a thermocouple probe which can be placed at 
various locations in the boundary layer. Experimental 
velocity and temperature profiles are plotted by a 
data acquisition system. 

3.2. Results and discussion 
By fitting the numerical calculation data with the 

experimental conditions, a comparison can be made 
between calculations and experiments. The main fIow 
velocity was 4.6 m s- ’ and the temperature 85°C; the 
beginning of the cavity is located at an abscissa equal 
to O.lSm. A range of velocity profiles are shown in 
Fig. 4 at several abscissae on the sinusoidal surface. 
Over the flat part of the plate, experimental and 
calculated profiles are identical and very close to that 
of Blasius. At other abscissae, the agreement is rather 
good outside the cavity; however, inside it, experi- 
ments were performed without a Bragg cell so that 
only the absolute horizontal component of the velocity 
is obtained, this is why the agreement is not very 
good. 

In Fig. 5, the calculated velocity profiles are plotted 
along the sinusoidal surface; it may be observed that 
separation occurs near the beginning of the cavity 
(x = O.l6m), and that the negative velocities remain 
quite small. The reattachment point is around 
x = 0.19 m. At x = 0.2 m, i.e. on the flat part after the 
cavity, the velocity profile is close to that of Blasius. 
It can be said that relaminarization occurs; however, 
fluctuations induced by the vortex inside the cavity 
are obviously present; perhaps, the transition region is 

already triggered by these fluctuations. By comparison 
with a flat plate, the local skin friction coefficient is 
reduced by the wavy wall; however, the transition 
point is advanced [S]. 

In Fig. 6, several temperature profiles are exhibited 
at various abscissae. The main flow velocity was 
again 4.6ms-‘, its temperature was 85°C and the 
temperature difference between the main flow and 
the wall was 15°C. As for the velocity, calculated 
temperature profiles are in good agreement with 
measured points above the flat part and the cavity. 
Inside the cavity, an important discrepancy between 
calculation and measurements should be noted. This 
difference is not due to the free convection terms 
which were neglected; when they are taken into 
account in equation (2), results are unchanged. 

This viscous dissipation cannot either explain this 
difference as long as the velocity gradients are low 
(Fig. 4). Such a discrepancy may be due to the 
tridimensional and unsteady effects induced by the 
vortex, since the local temperature is increased by hot 
air circulation. 

Nevertheless, for the dynamic point of view, the 
agreement between calculation and experiments is 
good enough to allow application of this calculation 
procedure to other wall geometries and different 
Reynolds numbers. 

3.3. Influence of the wall geometry 
For the same Reynolds number as used previously 

and for the same wavelength, the amplitude of the 
sinusoidal wall has been put successively equal to lo- ’ 
and 2.5 x lo-* m and results have been compared to 
the previous case where n = 5 x low3 m. Note 
that this amplitude cannot be much smaller than 
5 x 10m3 m, since the mesh spacings become too small 
and convergence cannot be reached. 

In Fig. 7, streamline patterns within and above the 
cavity are drawn from the calculated stream function 
values by interpolating between points when neces- 
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FIG. 5. Evolution of velocity profiles along the wavy wall. 

Ymm 

FIG. 6. Experimental and calculated dimensionless temperature profiles. 

sary, for the three values of the amplitude. It may be 
observed that the secondary vortex, present when 
a = 5 x 10m3m, becomes greater and greater when 
the amplitude increases while the principal vortex 
becomes flatter near the top of the cavity. Moreover, 
the separation point goes upstream and the reattach- 
ment point downstream. 

Isotherms which are also obtained by a linear 
interpolation are shown in Fig. 8 for these three 
amplitudes. From this figure, it can be shown that 
the total heat exchange at the wall is reduced by the 
presence of the cavity since the vortex plays the role 
of a thermal screen which creates a large region of 
uniform temperature in the bottom of the cavity. 

3.4. Injluence of the pow velocity 
With the first wall geometry (a = 5 x 10m3m and 

1 = 5 x lo-‘m), calculations were performed for 
various flow velocities. As an example, streamline 
patterns are shown in Fig. 9 for three values of 

u’, = 0.5, 7 and 15ms-’ which correspond to Rey- 
nolds numbers (based on momentum thickness) of 
about 40, 140 and 200, respectively. The vortices 
which are present in this figure, increase in size and 
in number as the flow velocity increases. Only one 
vortex appears for the lowest velocity, a secondary 
vortex is present and large enough for u, = 7 m s- ’ 
and a small third one develops at the bottom of the 
cavity for u, = 15 m s- ‘. The main flow is more and 
more insensitive to the presence of the cavity as flow 
velocity increases. 

For the same three cases, isotherms are drawn in 
Fig. 10; as previously, it can be seen that temperature 
gradients are regular enough for the low flow velocity, 
u, = 0.5ms-‘, isotherms warp when u, = 7ms-’ 
and become really asymmetric for u, = 15 m s- ‘. 
This may be due to the presence of the third vortex. 

3.5. Wall suction 
The comparison of a condensation phenomena 

with wall suction revealed some similarities as shown 
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in ref. [lo]. It may be of interest to know how, for this 
kind of sinusoidal cavity, the flow field is influenced by 
suction. 

If a suction of constant rate is applied along the 
wall boundary in the y-direction as in ref. [lo], 
velocity and temperature fields are modified. 

The analytical study of the problem remains the 
same; only the boundary condition for + at the wall 
is different, as stated before. It should be noted here 
that, with such a suction in the y-direction: II, = 0, 
v, = vP -K 0; so, along the sinusoidal boundary, the 
tangential velocity is not zero, and there is slip at 
the wall. In Figs. 11 and 12, streamline patterns and 
isotherms are respectively exhibited for three different 
suction rates. The separation point is suppressed by 
suction whereas a vortex is always present. It can be 
observed that isotherms enter deeper and deeper into 
the cavity so that temperature gradients increase with 
the rate of suction. 

4. CONCLUSION 

A solution of the dynamic and thermal problem of 
a fluid flowing above a sinusoidal cavity with or 
without suction was presented in this paper, when 
the boundary layer is supposed to be laminar. The 
flow equations were solved by using finite differences 
with a relaxation method. Rapid convergence towards 
stable solutions was obtained with well-chosen re- 
laxation coefficients. 

(1) From the dynamic point of view, experiments 
were in good agreement with theoretical results. For 
instance, the vortex inside the cavity is well predicted. 

(2) For the thermal field, outside the cavity the 
agreement between computed results and experiments 
is also good. However, inside the cavity, some discrep- 
ancies appear, which may be due to the assumption 
of a bidimensional flow; the vortex can induce tri- 
dimensional effects which were not taken into account. 
Hence, heat exchange at the wall is minimized in the 
computation. 

Extensions of the calculation to other cases show 
that even for slow velocities, the vortex fills up the 
cavity, so the outer flow is only slightly modified by 

the wall deformation. Moreover, for a given cavity, 
when the velocity is greater, the first vortex gives birth 
to two or more vortices. If, for a fixed main flow 
velocity and for a constant wavelength, the amplitude 
of the deformation is increased, the secondary vortex 
occupies more than half the volume of the cavity. 
Finally, the effect of suction at the wall can be 
predicted. 

1. 

2. 

3. 

4. 

5. 

6. 

I. 

8. 

9. 

10. 

11. 

REFERENCES 

R. D. Mills, Numerical solution of viscous flow equations 
for a class of closed flows, J. R. aeronaut. Sot. 69, 714- 
718 (1965). 
D. Bellet, D. P. Ly and M. Milleret, Steady laminar 
Rows between a ball and a spherical cavity, Trans. Am. 
Sot. mech. Engrs, Series E, J. appl. Mech. 51,6-I2 (1984). 
H. Inaba and N. Seki, Natural convective heat transfer 
in a shallow rectangular cavity with different end tem- 
peratures, Numer. Heat Transfer 4, 1459-1468 (1981). 
A. Bhatti and W. Aung, Finite difference analysis of 
laminar separated forced convections in cavities, Trans. 
Am. Sot. mech. Engrs, Series C, J. Heat Transfer 106, 
49-54 (1984). 
R. W. Johnson and A. M. Dhanak, Heat transfer in 
laminar flow past a rectangular cavity with fluid injec- 
tion, Trans. Am. Sot. mech. Engrs, Section C, J. Heat 
Transfer, 98, 226-231 (1976). 
A. K. Gupta and E. L. Mollo-Christensen, An experimen- 
tal investigation of air flow over a wavy plate, Massa- 
chussets Institute of Technology, Aeroelastic and Struc- 
tures Research Laboratory (1966). 
B. Prunet-Foch, Etude des d&collements, en tcoulement 
isovolume se produisant sur une plaque plane 51 paroi 
sinusdidale, Thdse de 38me Cycle, Universitb de Paris 
(1969). 
C. Saidi, Transferts de chaleur et de masse dans une 
cavitt sinusdidale placee dans un ecoulement laminaire 
incompressible constitut d’air pur ou d’un miilange 
sat& en vapeur, Thtse de 3tme Cycle, UniversitC Paris 
VII (1985). 
F. Legay-D&sesquelles, Etude thtorique et exp&rimentale 
du transfert de chaleur et de masse dans une couche 
limite incompressible avec condensation sur une plaque 
plane, Thtse d’Etat, Universitt Paris VI (1984). 
F. Legay-DBsesquelles and B. Prunet-Foch, Dynamic 
behaviour of a boundary layer with condensation along 
a flat plate: comparison with suction, Int. J. Heat Mass 
Transfer 28, 2363-2370 (1985). 
F. M. White, Viscous Fluid-flow, pp. 217-224. McGraw- 
Hill, New York (1974). 

ECOULEMENT LAMINAIRE AU-DESSUS D’UNE CAVITE SINUSOrDALE 

R&urn&--L’btude Porte sur le comportement dynamique et thermique d’un ecoulement d’air au-dessus 
d’une cavitC sinusoidale. Une r&solution numtrique des Cquations de Navier-Stokes et de l’bnergie a 
permis de determiner les champs de vitesse et de temgrature g l’intkrieur de la caviti et au-dessus. Les 
r&ultats ont ttt confront&s aux mesures r&alis&es 6 l’aide d’une maquette placee dans un Bcoulement 
uniforme incompressible. Le bon accord obtenu sur la dtfinition du champ dynamique de l’6coulement a 
conduit g appliquer le calcul g diverses gtom6tries de paroi, g diff&rentes vitesses de 1’6coulement et g des 
cas oti existe une aspiration A la paroi. Pour chaque rtsultat, les lignes de courant et les isothermes sont 

foumis. 
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LAMINARE STRGMUNG ENTLANG DEN SINUSFCjRMIGEN WiiNDEN 
EINES HOHLRAUMS 

Zusammenfassung-Die dynamischen und therm&hen Eigenschaften einer laminaren Stromung entlang 
den sinusfiirmigen Wlnden eines Hohlraums werden untersucht. Die Geschwindigkeits- und Temperatur- 
verteilungen innerhalb und oberhalb des Hohlraums werden aus den Striimungsgleichungen numerisch 
berechnet. Die Rechenergebnisse werden mit solchen experimentellen verglichen, welche in einer 
gleichfiirmigen, inkompressiblen Stromung ermittelt worden waren. Die gute Ubereinstimmung mit dem 
dynamischen Feldverlauf gestattet die Ubertragung der Berechnungen auf andere sinusformige 
Wandungen. andere Hauptstromungs-Geschwindigkeiten und auf FClle mit Absaugung an der Wand. Es 
werden Beispiele der Stromlinien und der Isothermen fur diese unterschiedlichen Bedingungen angegeben. 

JIAMMHAPHOE TEHEHME 3A CMHYCOHjJAJIbHO~ lTOJIOCTbI0 

hlHOTaUHR-kiCCneilOBaHb1 flAHaMH%ZCKRe A TeIlnOBbIe XapaKTepHCTlrKH naMBHapHOr0 TCWHWII 38 
Ck,HyCOWWIbHOti IIOnOCTbIO. nO,Ifl CKOpOCTH B TeMIIepaTypbI BHyTpH H Ha/L, nOnOCTb,O Ha&,eHbI SWC- 

neHH0 M3 ypaBHeHHti B113KOrO Te’IeHAII. k3ynbTaTbI CpaBHHBalOTCSI C 3KCIlepHMWTanbHbIMH L,aHHbIMB 

Llnll MOJWIH, IIOMeUeHHOfi B OnHOpODHbIfi IIOTOK HtZ‘ZKHMaeMOk ~KWnKOCTH. XOpOluee COOTBeTCTBHe C 

KOH&WypaLVi& LWHaMWIeCKOrO IlOnl JIaeT BOSMO*HOCTb IIpkiMeHSITb ZiHHbIe pe3ynbTaTbI J?IJUl npyrHX 

ROMeTpHii CtiHyCO,,EUIbHOfi CTeHKB, nnll L,pyWX CKOpOCTeir OCHOBHOrO I,OTOKa A &WI CnyWeB OTCOCB 

Ha cTeHKe. Hpencraenenbr nprrbrepbt newiR roxa A n3oreph4 nnx pa3newbIx cnyqaea. 


