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Laminar flow past a sinusoidal cavity
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Abstract—The dynamic and thermal properties of a laminar flow past a sinusoidal cavity are studied.
Velocity and temperature fields inside and above the cavity are numerically determined from the viscous
flow equations. Results are compared with the experimental data obtained with a model placed in an
incompressible and uniform flow. The good agreement with the dynamic field configuration allows the
extension of these calculations to other sinusoidal wall geometries, to other main flow velocities and to
cases with suction at the wall. Examples of streamlines and isotherms are given for these various situations.

1. INTRODUCTION

FLOWS and heat transfer in cavities of various shapes
have been the subject of many publications in recent
years [1-7]). Such studies are motivated by a desire
to better understand the perturbations induced on the
transfers at the wall by various surface irregularities.

The development of new low-velocity measurement
techniques, such as laser anemometry, has made
possible some of these studies [2]; simultaneously,
the numerical resolution of the coupled Navier—
Stokes and energy equations in the cavity [2-5] is
now feasible with the high-speed and large memory
computers.

This paper deals with the analytical and experi-
mental study of heat transfer in laminar flow past a
sinusoidal cavity of large amplitude/wavelength ratio.
Various surface geometries and flow velocities are
numerically investigated. Finally, the influence of
suction at the wall is presented.

2. ANALYTICAL STUDY

Let us consider a sinusoidal cavity of amplitude a
and wavelength A (see Fig. 1). The fluid is assumed to
be incompressible, Newtonian, with constant proper-
ties inside and over the boundary layer. Due to the
low value of the Reynolds number, the flow is assumed
to be steady and laminar. Effects of gravity and
viscous dissipation are supposed to be negligible.

The dimensionless differential equations describing
the velocity and temperature fields may be written in

F1G. 1. Schematic configuration.
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terms of stream function y, vorticity @ and tempera-
ture 6 as
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Equation (3) has the same mathematical form as
equation (2), but its boundary conditions are different.

2.1. Boundary conditions

Domain 2 is shown in Fig. 1. The boundary
conditions relative to this physical situation are given
below.

2.1.1. At the wall.

(1) For the stream function:

(a) when there is no slip at the wall and no
injection nor suction through it

ol _ oy _ —0-
_@w—-@fw_o and ¥, =0;
(b) when a uniform and vertical suction is
imposed
o\ _ vl _
6)7w_0 and e Uy
then ¥, becomes a linear function of the
abscissa x
¥, = —0,X + const.

(2) The vorticity w,, at the wall is deduced from
equation (1) near the wall (cf. ref. [8]).
(3) The temperature is equal to T,,, which gives

9, = 0.
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NOMENCLATURE

a amplitude of the sinusoidal cavity 9  dimensionless temperature,

[m] (T"' Tw)/ (Tm - Tw)
D reference length (taken here equal A wavelength

to the momentum thickness at x,) v kinematic viscosity

[m] ¢  dimensionless stream function,
dx,dy mesh size in the x- and y-directions (stream function/u D)

[m] o  dimensionless vorticity function,
Pr Prandtl number (vorticity/(u_,/D)).
Re Reynolds number calculated with D
T local temperature [K] Subscripts
%, v velocity components [ms™!] d  upstream abscissa of domain 2 (see
4,  dimensionless components: Fig. 1)

i=ufug; 0=0v, f downstream abscissa of domain 2
x,y  coordinates defined in Fig. 1 [m] i,j denotes position in the x- and y-
X x/D directions
7 y/b. w  wall

oo main flow.
Greek symbols
oy, d,5,05 relaxation factors for the ¥, @ Superscript
and @ difference equations, n  iteration index.
respectively

2.1.2. In the main flow.
#, =1 which implies %‘yflé =1

=0

T=T, which implies 6 = 1.

2.1.3. At the upstream boundary: x = x,. The pro-
files of the stream function ¢/(y) and the vorticity w(y)
are specified from Blasius’ boundary layer theory on
a flat plate at zero incidence with the previous
boundary conditions in the main flow and at the wall.

The temperature profile 8(y) is directly deduced
from the velocity u(y) using the Crocco analogy which
gives

8(3) = u(p).

It should be noted that the choice of such profiles
is not very important, if the upstream boundary of
domain 2 is far enough from the beginning of the
cavity; computation shows that the results are not
modified with another choice of the initial profiles.

2.1.4. At the downstream boundary: x = x;. As pre-
viously, the imposed conditions are approximative by
nature, since the cavity may indefinitely influence the
external flow. The following relations were used:

o

5} = ¢const.
‘o

e 0

and

oo _ const

ax '
These relations correspond to fully developed flow
and temperature fields. However, several other con-
ditions were tried and results were found to be similar.

2.2. Numerical treatment

With the boundary conditions, the system of differ-
ential equations cannot be solved analytically and so
numerical techniques must be employed. The use of
a finite difference method enables us to transform the
three partial differential equations into algebraic ones.
The choice of the general mesh system for domain 9
has a predominant influence on the convergence of
the calculations.

A non-uniform, rectangular grid was chosen with
a varying mesh spacing throughout the domain. The
grid in Fig. 3 is shown for illustration purposes only;
it does not represent exactly the meshes which were
used.

In the cavity, the mesh size was kept constant along
the x-axis, whereas along the y-axis it was determined
in order to have nodes lying just upon the sinusoidal
wall. Hence, the wall vorticity w,, is easily evaluated
without any interpolation.

Outside the cavity, the mesh size along the x-axis
was kept constant. Along the y-axis: between 0 and
y = D {where D is the boundary layer thickness at
the abscissa x4) the mesh was also kept constant; for
y > D, mesh sizes were determined in arithmetical
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progression. In this way the position of the upper
boundary of domain 2 can be modified without
increasing the number of meshes, only the factor of
the progression is changed. With this possibility, the
distance over which the solution is not influenced
by this position can be estimated; in the present
applications a distance of 7D was found to be
sufficient,

2.3. Discretization
Equations (1}~(3) are discretized as follows:

(1) For the diffusion terms, ‘central differences’ are
used

dx ¢t+l)‘ (dfi+df:+1)¢u+din+1¢i—u

dx; dx,+1(dx + dx;+ 1)

-

where ¢, ; is the value of any function ¢ at the i, jth
node of the grid; this is illustrated in Fig. 2. ¢ is used
for the function y, w or .

(2) For the convection terms, ‘upwind differences’
are used (cf. ref. [11]). They may be expressed as

g9 _gu= %1 aso
ox dx;

ag‘l.’= LTV Ik IR R P
X dx|+1

with equivalent formulae along the y-axis.

When the differential terms are replaced by these
algebraic quantities in the three equations, an iterative
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calculation is used. At each iteration, the new solutions
of the three equations are derived from the previous
calculated fields. These calculations are repeated until
the difference between two successive iterations is
smaller than 5/10,000 for the three functions. To
start this iterative procedure a judicious arbitrary
repartition of ¥, » and 8 in the whole domain is used;
it was found that Blasius’ initial profiles over the
cavity and values equal to zero inside the cavity
provided good initial profiles.

This convergence procedure is largely improved by
using the relaxation method, where the values y°, ©°
and 8° directly computed from the equations are
corrected by y*~ 1, @ Y and 61, given at the
{n — 1)th iteration, as

Yo =1 —a WiV + ¥,
o = (1 - a)of ™V + ay0f;
6(’1) = (1 - 0(3)9(" b + D£39‘EJ

where a,, o, a, are relaxation coefficients.

The stability of the solution depends essentially
upon the choice of the relaxation parameters, the
mesh size and the treatment of the convection terms.

For the stream function ¥, a consiant relaxation
coefficient «, can be taken. However, relaxation of
the vorticity with a constant coefficient a, leads to
dramatic instabilities as observed by Johnson and
Dhanak [5]. They suggested that, for a rectangular
cavity, the coefficient « is a function of the local
velocity at each step. In the present work, this
coefficient «, is in a similar form, but the mesh sizes
in the x- and y-directions being neither equal nor
regular, the absolute value of the difference in velo-
cities at each node was taken into account, in the
following way:

ky
ky + Red—}—)%i—zm!u B}

%y =

where k, and k, are constants; for experimental
conditions, they are equal to 3 and 4, respectively; so,
a, is varying between 0.1 and 0.75 whereas a, is equal
to 1.2.

For the temperature field, the energy equation is
analogous to the momentum one, thus o, has the
same expression as «,, with Re Pr instead of Re.

When these coefficients are judiciously chosen,
convergence was always obtained in less than 800
iterations. If more iterations are performed the conver-
gence improves regularly; typical solution times
required 1-2min for 800 iterations on the NAS-
AS/9080.

3. EXPERIMENTAL PROCEDURE AND RESULTS

3.1. Experimental devices

Experiments were carried out at atmospheric pres-
sure, in a low-speed wind tunnel, the characteristics
of which are presented in refs. [9, 10]. The temperature
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FIG. 4. Experimental and calculated velocity profiles.

of the fluid is controlled with an electrical air heater.
The test plate, made of brass, has an elliptic leading
edge, then is flat and further downstream, wavy.
The amplitude of the waves is equal to 5mm, the
wavelength is S0mm. The test plate is heated by a
circulation of warm water; its uniform temperature is
lower than that of the main flow.

Velocity measurements are performed by laser
anemometry and local temperatures are measured by
means of a thermocouple probe which can be placed at
various locations in the boundary layer. Experimental
velocity and temperature profiles are plotted by a
data acquisition system.

3.2. Results and discussion

By fitting the numerical calculation data with the
experimental conditions, a comparison can be made
between calculations and experiments. The main flow
velocity was 4.6 ms ™! and the temperature 85°C; the
beginning of the cavity is located at an abscissa equal
to 0.15m. A range of velocity profiles are shown in
Fig. 4 at several abscissae on the sinusoidal surface.
Over the flat part of the plate, experimental and
calculated profiles are identical and very close to that
of Blasius. At other abscissae, the agreement is rather
good outside the cavity; however, inside it, experi-
ments were performed without a Bragg cell so that
only the absolute horizontal component of the velocity
is obtained, this is why the agreement is not very
good.

In Fig. 5, the calculated velocity profiles are plotted
along the sinusoidal surface; it may be observed that
separation occurs near the beginning of the cavity
(x = 0.16 m), and that the negative velocities remain
quite small. The reattachment point is around
x = 0.19m. At x = 0.2m, i.e. on the flat part after the
cavity, the velocity profile is close to that of Blasius.
It can be said that relaminarization occurs; however,
fluctuations induced by the vortex inside the cavity
are obviously present; perhaps, the transition region is

already triggered by these fluctuations. By comparison
with a flat plate, the local skin friction coefficient is
reduced by the wavy wall; however, the transition
point is advanced [8].

In Fig. 6, several temperature profiles are exhibited
at various abscissae. The main flow velocity was
again 4.6ms™, its temperature was 85°C, and the
temperature difference between the main flow and
the wall was 15°C. As for the velocity, calculated
temperature profiles are in good agreement with
measured points above the flat part and the cavity.
Inside the cavity, an important discrepancy between
calculation and measurements should be noted. This
difference is not due to the free convection terms
which were neglected; when they are taken into
account in equation (2), results are unchanged.

This viscous dissipation cannot either explain this
difference as long as the velocity gradients are low
(Fig. 4). Such a discrepancy may be due to the
tridimensional and unsteady effects induced by the
vortex, since the local temperature is increased by hot
air circulation.

Nevertheless, for the dynamic point of view, the
agreement between calculation and experiments is
good enough to allow application of this calculation
procedure to other wall geometries and different
Reynolds numbers.

3.3. Influence of the wall geometry

For the same Reynolds number as used previously
and for the same wavelength, the amplitude of the
sinusoidal wall has been put successively equal to 102
and 2.5 x 10”2 m and results have been compared to
the previous case where a=35x 10">m. Note
that this amplitude cannot be much smaller than
5 x 1073 m, since the mesh spacings become too small
and convergence cannot be reached.

In Fig. 7, streamline patterns within and above the
cavity are drawn from the caiculated stream function
values by interpolating between points when neces-
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F1G. 6. Experimental and calculated dimensionless temperature profiles.

sary, for the three values of the amplitude. It may be
observed that the secondary vortex, present when
a =15 x 10"3m, becomes greater and greater when
the amplitude increases while the principal vortex
becomes flatter near the top of the cavity. Moreover,
the separation point goes upstream and the reattach-
ment point downstream.

Isotherms which are also obtained by a linear
interpolation are shown in Fig. 8 for these three
amplitudes. From this figure, it can be shown that
the total heat exchange at the wall is reduced by the
presence of the cavity since the vortex plays the role
of a thermal screen which creates a large region of
uniform temperature in the bottom of the cavity.

3.4. Influence of the flow velocity

With the first wall geometry (a = 5 x 10”3 m and
4 =5 x 10"2m), calculations were performed for
various flow velocities. As an example, streamline
patterns are shown in Fig. 9 for three values of

u, =0.5,7 and 15ms~! which correspond to Rey-
nolds numbers (based on momentum thickness) of
about 40, 140 and 200, respectively. The vortices
which are present in this figure, increase in size and
in number as the flow velocity increases. Only one
vortex appears for the lowest velocity, a secondary
vortex is present and large enough for u, = 7ms™!
and a small third one develops at the bottom of the
cavity for u, = 15ms~!. The main flow is more and
more insensitive to the presence of the cavity as flow
velocity increases.

For the same three cases, isotherms are drawn in
Fig. 10; as previously, it can be seen that temperature
gradients are regular enough for the low flow velocity,
u, =0.5ms™!, isotherms warp when u, = 7ms™!
and become really asymmetric for u, = 15ms™!.
This may be due to the presence of the third vortex.

3.5. Wall suction
The comparison of a condensation phenomena
with wall suction revealed some similarities as shown
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FIG. 7. Analytical streamline patterns for different values of amplitude a.
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in ref. [10]. It may be of interest to know how, for this
kind of sinusoidal cavity, the flow field is influenced by
suction.

If a suction of constant rate is applied along the
wall boundary in the y-direction as in ref. {10],
velocity and temperature fields are modified.

The analytical study of the problem remains the
same; only the boundary condition for y at the wall
is different, as stated before. It should be noted here
that, with such a suction in the y-direction: u, =0,
vy = U, < 0; so, along the sinusoidal boundary, the
tangential velocity is not zero, and there is slip at
the wall. In Figs. 11 and 12, streamline patterns and
isotherms are respectively exhibited for three different
suction rates. The separation point is suppressed by
suction whereas a vortex is always present. It can be
observed that isotherms enter deeper and deeper into
the cavity so that temperature gradients increase with
the rate of suction.

4. CONCLUSION

A solution of the dynamic and thermal problem of
a fluid flowing above a sinusoidal cavity with or
without suction was presented in this paper, when
the boundary layer is supposed to be laminar. The
flow equations were solved by using finite differences
with a relaxation method. Rapid convergence towards
stable solutions was obtained with well-chosen re-
laxation coefficients.

(1) From the dynamic point of view, experiments
were in good agreement with theoretical results. For
instance, the vortex inside the cavity is well predicted.

(2) For the thermal field, outside the cavity the
agreement between computed results and experiments
is also good. However, inside the cavity, some discrep-
ancies appear, which may be due to the assumption
of a bidimensional flow; the vortex can induce tri-
dimensional effects which were not taken into account.
Hence, heat exchange at the wall is minimized in the
computation.

Extensions of the calculation to other cases show
that even for slow velocities, the vortex fills up the
cavity, so the outer flow is only slightly modified by
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the wall deformation. Moreover, for a given cavity,
when the velocity is greater, the first vortex gives birth
to two or more vortices. If, for a fixed main flow
velocity and for a constant wavelength, the amplitude
of the deformation is increased, the secondary vortex
occupies more than half the volume of the cavity.
Finally, the effect of suction at the wall can be
predicted.
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ECOULEMENT LAMINAIRE AU-DESSUS D'UNE CAVITE SINUSOIDALE

Résumé—L’étude porte sur le comportement dynamique et thermique d’un écoulement d’air au-dessus
d’une cavité sinusoidale. Une résolution numérique des équations de Navier—Stokes et de I'énergie a
permis de déterminer les champs de vitesse et de température a lintérieur de la cavité et au-dessus. Les
résultats ont été confrontés aux mesures réalisées a I'aide d’une maquette placée dans un écoulement
uniforme incompressible. Le bon accord obtenu sur la définition du champ dynamique de I'écoulement a
conduit a appliquer le calcul 4 diverses géométries de paroi, a différentes vitesses de I'écoulement et a des
cas ou existe une aspiration a la paroi. Pour chaque résultat, les lignes de courant et les isothermes sont
fournis.
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LAMINARE STROMUNG ENTLANG DEN SINUSFORMIGEN WANDEN
EINES HOHLRAUMS

Zusammenfassung—Die dynamischen und thermischen Eigenschaften einer laminaren Strémung entlang
den sinusférmigen Winden eines Hohlraums werden untersucht. Die Geschwindigkeits- und Temperatur-
verteilungen innerhalb und oberhalb des Hohlraums werden aus den Stromungsgleichungen numerisch
berechnet. Die Rechenergebnisse werden mit solchen experimentellen verglichen, welche in einer
gleichférmigen, inkompressiblen Stromung ermittelt worden waren. Die gute Ubereinstimmung mit dem
dynamischen Feldverlauf gestattet die Ubertragung der Berechnungen auf andere sinusférmige
Wandungen, andere Hauptstrdomungs-Geschwindigkeiten und auf Félle mit Absaugung an der Wand. Es
werden Beispiele der Stromlinien und der Isothermen fiir diese unterschiedlichen Bedingungen angegeben.

JAMUHAPHOE TEYEHME 3A CUHYCOUJAJIBHONM MOJIOCThIO

Annotamms—Hccnenoanpl IMHAMHYECKHE M TEIUIOBbIE XAPAKTEPHCTHKH JIAMMHADHOTO TEYeHMs 3a

CHHYCOMIANBHOM NoJIocThIO. [1oJs CKOPOCTH H TeMmepaTypbl BHYTPH X Hajd NOJIOCTbIO HaMIeHbl 4HC-

JIEHHO M3 YPaBHEHHMH BA3KOro TeueHHs. Pe3ylbTaThl CPaBHMBAIOTCH C IKCIEPHMEHTANbHBIMH JaHHBIMH

ZUIA MOJIEJTH, [IOMELUEHHOH B OJHOPOMAHBIR MOTOK HECXKHMAaeMOH XHAKOCTH. Xopolllee COOTBETCTBHE C

KOH(Urypauueil TMHAMHYECKOTO M0 1a€T BOIMOXHOCTh PHMEHSATh AaHHbIE Pe3YIbTaThl L1 APYTHX

reOMeTPHA CHHYCOMOATLHON CTEHKH, 1N NPYTMX CKOPOCTell OCHOBHOTO MOTOKA H A CJIy4aeB OTcoca
Ha cTenke. [IpeacTaBnessl MpUMepH THHUH TOKA B M30TEPM /IS PA3JTHYHbIX CIyYaeB.
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